Continued Finite Fractions and Euclid's Algorithm

Parvinder Singh

P.G. Department of Mathematics, S.G.G. S. Khalsa College, Mahilpur. (Hoshiarpur).

Abstract – A "general" continued fraction representation of a real number x is one of the form

$$x = a_0 + \frac{b_1}{a_1 + \frac{b_2}{a_2 + \frac{b_3}{a_3 + \dots + \frac{b_n}{a_N}}}}$$

Where a_0 , a_1 , ... and b_1 , b_2 ... are integers. In this article we define convergents of a finite continued fraction and continued fractions with positive quotients and discuss fraction algorithm and Euclid's algorithm.

Index Terms - Euclid Algorithm, Real number, Fraction.

1. INTRODUCTION

Define a function $f(n) = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_N}}} + \frac{1}{a_N}}$

Consisting of N + 1 variables a_0, a_1, \dots, a_N as a finite continued fraction. As the representation (a) is cumbersome, we shall usually write it as $[a_0, a_1, \dots, a_n]$ and we call a_0, a_1, \dots, a_n the partial quotients or simply the quotients of the finite continued fraction. As above we see that $[a_0] = \frac{a_0}{1}$, $[a_0, a_1] = \frac{a_0 a_1 + 1}{a_1}$, $[a_0, a_1, a_2] = \frac{a_2 a_1 a_0 + a_2 + a_0}{a_2 a_1 + 1}$ Therefore $[a_0, a_1] = a_0 + \frac{1}{a_1}$ and

Similarly
$$[a_0, a_1, \dots, a_{n-1}, a_n]$$

= $[a_0, a_1, \dots, a_{n-2}, a_{n-1} + \frac{1}{a_n}]$(1.1)
i.e. $[a_0, a_1, \dots, a_n] = a_0 + \frac{1}{[a_0, a_1, \dots, a_n]}$
= $[a_0, [a_0, a_1, \dots, a_n]]$, for $1 \le n \le N$
Moreover
 $[a_0, a_1, \dots, a_{m-1}, [a_m, a_{m+1}, \dots, a_n]]$

for
$$1 \le n \le N$$
.

1.1. Definition: The quantity $[a_0, a_1, \dots, a_n]$ for $(1 \le n \le N)$ is called nth convergent to $[a_0, a_1, \dots, a_N]$. Also it is easy to find the convergents by means of the following theorem.

Theorem 1.2: Let p_n and q_n be defined as under $p_0 = a_0$, $p_1 = a_1a_0 + 1$, $p_n = a_n p_{n-1} + p_{n-2}$

 $(2 \le n \le N)$ and

 $q_1 = 1, q_1 = a_1, q_n = a_n q_{n-1} + q_{n-2}$ ($2 \le n \le N$) then $[a_0, a_1, \dots, a_n] = \frac{p_n}{q_n}$.

Proof: For n=1 and n =1 theorem is obviously true.

Let suppose that result holds for $n \le m$, where m < N. Then

 $[a_0, a_1, \dots, a_{m-1}, a_m] = \frac{p_m}{q_m} = \frac{a_m p_{m-1} + p_{m-2}}{a_m q_{m-1} + q_{m-2}}, \text{ and } p_{m-1}, p_{m-2},$ q_{m-1}, q_{m-2} depend only upon a_0, a_1, \dots, a_{m-1} .

Hence using (1.1) we get $[a_0, a_1, ..., a_{m-1}, a_m, a_{m+1}]$

$$= [a_0, a_1, \dots, a_{m-1}, a_m + \frac{1}{a_{m+1}}]$$

$$= \frac{(a_m + \frac{1}{a_{m+1}})p_{m-1} + p_{m-2}}{(a_m + \frac{1}{a_{m+1}})q_{m-1} + q_{m-2}} = \frac{a_{m+1}(a_m p_{m-1} + p_{m-2}) + p_{m-1}}{a_{m+1}(a_m q_{m-1} + q_{m-2}) + q_{m-1}} = \frac{a_{m+1}p_m + p_{m-1}}{a_{m+1}q_m + q_{m-1}} = \frac{p_{m+1}}{q_{m+1}}$$

Hence by induction the theorem is proved.

Note: From $p_0 = a_0$, $p_1 = a_1a_0 + 1$, $p_n = a_n p_{n-1} + p_{n-2}$ (2 \le $n \le$ N) and

 $q_1 = 1, q_1 = a_1, q_n = a_n q_{n-1} + q_{n-2}$ ($2 \le n \le N$) it follows that

$$\frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}$$

Also $p_n q_{n-1} - p_{n-1} q_n = (a_n p_{n-1} + p_{n-2}) q_{n-1}$

$$-p_{n-1}(a_n q_{n-1} + q_{n-2})$$

$$= -(p_{n-1}q_{n-2} - p_{n-2}q_{n-1}).$$

Repeating the argument with n-1, n-2,....,2 in place of n, we get

$$p_n q_{n-1} p_{n-1} q_n = (-1)^{n-1} (p_1 q_0 p_0 q_1) = (-1)^{n-1}.$$

Also $p_n q_{n-2}$, $p_{n-2} q_n = (a_n \ p_{n-1} + p_{n-2}) q_{n-2} - p_{n-2}(a_n \ q_{n-1} + q_{n-2})$

$$= a_n(p_{n-1}q_{n-2} - p_{n-2}q_{n-1}) = (-1)^{n-1} a_n$$

Remark: The functions p_n and q_n satisfies the following.

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$$
 or $\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_{n-1} q_n}$

©EverScience Publications

Also they satisfy $p_n q_{n-2} \cdot p_{n-2} q_n = (-1)^{n-1} a_n$ or $\frac{p_n}{q_n} \cdot \frac{p_{n-2}}{q_{n-2}} = \frac{(-1)^{n-1} a_n}{q_{n-2} q_n}$.

1.3.Definition: Now we assign numerical values to the quotients a_n so to the fraction $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_1 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{a$

convergents.

Now suppose that $a_1 > 0, \ldots, a_N > 0$, a_0 may be negative , in this case the continued fraction is said to be simple. Write $x_n = \frac{p_n}{q_n}$, $x = x_N$ so that the value of the continued fraction is x_N or x. Then

$$[a_0, a_1, \dots, a_N] = [a_0, a_1, \dots, a_{n-1}, [a_n, a_{n+1}, \dots, a_N]]$$
$$= \frac{[a_n, a_{n+1}, \dots, a_N]p_{n-1} + p_{n-2}}{[a_n, a_{n+1}, \dots, a_N]q_{n-1} + q_{n-2}} \text{ for } 2 \le n \le \mathbb{N}.$$

Note: As every q_n is positive then from $\frac{p_n}{q_n} - \frac{p_{n-2}}{q_{n-2}} = \frac{(-1)^{n-1}a_n}{q_{n-2}q_n}$ and $a_1 > 0, \dots, a_N > 0$, $x_n - x_{n-2}$ has the sign of $(-1)^n$. Which proves that the even convergents x_{2n} increase strictly with n, while the odd convergents x_{2n+1} decrease strictly.

Also from $\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_{n-1}q_n}$, $x_n - x_{n-1}$ has the sign of $(-1)^{n-1}$

so that $x_{2m+1} > x_{2m}$ contrary if we assume that $x_{2m+1} \le x_{2\mu}$ for some m, μ . If m < μ then from above $x_{2m+1} < x_{2m}$, and if m < μ

then $x_{2\mu+1} < x_{2\mu}$ which is a contradiction. Hence we say that every odd convergent is greater than any even convergent.

1.4.Definition: If all a_n are integers then the continued fraction is called Simple Fraction. If p_n and q_n are integers and q_n is positive then

 $[a_0, a_1, \dots, a_N] = \frac{p_N}{q_N} = x$, we say that the number x (which is necessarily rational) is represented by the continued fraction.

Theorem 1.5: $q_n \ge n$, with inequality when n > 3.

Proof: In the first place, $q_0 = 1$, $q_1 = a_1 \ge 1$. If $n \ge 2$ then

 $q_n = a_n q_{n-1} + q_{n-2} \ge q_{n-1} + 1$ so that $q_n > q_{n-1}$ and $q_n \ge n$. If n > 3, then

$$q_n \ge q_{n-1} + q_{n-2} > q_{n-1} + 1 \ge n$$
, and so $q_n > n$.

1.6.Definition: Any simple continued fraction $[a_0, a_1, \dots, a_N]$ represents a rational number $x = x_N$

Theorem 1.7: If x is representable by a simple continued fraction with an odd (even) number of convergents, it is also representable by one with an even (odd) number.

Proof: If $a_n \ge 2$ then $[a_0, a_1, \dots, a_n]$ = $[a_0, a_1, \dots, a_n - 1, 1]$ while, if $a_n = 1$, $[a_0, a_1, \dots, a_{n-1}, 1] = [a_0, a_1, \dots, a_{n-2}, a_n + 1]$

For example [2,2,3] = [2,2,2,1] this choice of alternative representations is often useful. We call $a'_n = [a_n, a_{n+1}, \dots, a_N]$ ($0 \le n \le N$) the nth complete quotient of the continued fraction $[a_0, a_1, \dots, a_N]$. Thus $x = a'_0$, $x = \frac{a'_1 a_0 + 1}{a'_1}$ and

Theorem 1.8: $a_n = [a'_n]$, the integral part of a'_n except that $a_{N-1} = [a_{N-1}] - 1$ when $a_N = 1$.

.(b)

Proof: If N = 0, then $a_0 = a'_0 = [a'_0]$. If N > 0 then $a'_n = a_n + \frac{1}{a'_{n+1}}$ ($0 \le n \le N$ -1).

Now $a'_{n+1} > 1$ ($0 \le n \le N-1$) except that $a'_{n+1} = 1$ when n = N-1 and $a_N = 1$.

Hence $a_n < a'_n < a_n + 1$ ($0 \le n \le N$ -1) and $a_n = [a'_n]$ for ($0 \le n \le N$ -1) except in the case specified. And in any case $a_N = a'_N = [a'_N]$.

Theorem 1.9: If two simple continued fractions $[a_0, a_1, \dots, a_N]$ and $[b_0, b_1, \dots, b_M]$ have the same value x, and $b_M > 1$, then M = N and the fractions are identical.

Proof: When we say that the two continued fractions are identical we mean that they are formed by the same sequence of partial quotients.

By the above theorem $a_0 = [x] = b_0$. Let us suppose that the first n partial quotients in the continued fractions are identical and that a'_n and b'_n are the nth complete quotients. Then $x = [a_0, a_1, \dots, a_{n-1}, a'_n] = [a_0, a_1, \dots, a_{n-1}, b'_n]$.

If n = 1 then $a_0 + \frac{1}{a_1'} = a_0 + \frac{1}{b_1'}$, $a_1' = b_1'$, and therefore by above theorem $a_1 = b_1$.

If n > 1, then by
$$\frac{a'_n p_{n-1} + p_{n-2}}{a'_n q_{n-1} + q_{n-2}} = \frac{b'_n p_{n-1} + p_{n-2}}{b'_n q_{n-1} + q_{n-2}}$$
,

$$(a'_n - b'_n)(p_{n-1}q_{n-2} - p_{n-2}q_{n-1}) = 0$$
. But $p_{n-1}q_{n-2} - p_{n-2}q_{n-1} = (-1)^n$ then

as $p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$ and so $a'_n = b'_n$,

it follows from the above theorem that $a_n = b_n$.

Suppose now for example, that $N \le M$. Then our argument shows that $a_n = b_n$ for $N \le M$. If M > N then $\frac{p_N}{q_N} = [a_0, a_1, \dots, a_N] = [a_0, a_1, \dots, a_N, b_{N+1}, \dots, b_M]$

 $=\frac{b'_{N+1}p_N+p_{N-1}}{b'_{N+1}q_N+q_{N-1}},$ Hence by (b) $p_Nq_{N-1}-p_{N-1}q_N=0$ which is false. Hence M = N and the fractions are identical.

2. CONTINUED FRACTION ALGORITHM AND **EUCLID'S ALGORITHM**

Let x be any real number, and let $a_0 = [x]$. Then $x = a_0 + \xi_0$, 0 $\leq \xi_0 < 1.$

If
$$\xi_0 \neq 0$$
, we can write $\frac{1}{\xi_0} = a'_1$, $[a'_n] = a_1$, a'_1
 $= a_1 + \xi_1$, $0 \leq \xi_1 < 1$.
If $\xi_1 \neq 0$, we can write $\frac{1}{\xi_1} = a'_2 = a_2 + \xi_2$,
 $0 \leq \xi_2 < 1$, and so on
Also $a'_n = \frac{1}{\xi_{n-1}} > 1$, and so $a_n \geq 1$, for $n \geq 1$.
Thus $x = [a_0, a'_1] = [a_0, a_1 + \frac{1}{a'_2}] = [a_0, a_1, a'_2] = [a_0, a_1, a_2, a'_3]$
 $= \dots$ where a_0, a_1, a_2, \dots are integers and
 $a_1 > 0, a_2 > 0, \dots \dots$
The system of equations $x = a_0 + \xi_0$, $(0 \leq \xi_0 < 1)$,

$$\frac{1}{\xi_0} = a_1' = a_1 + \xi_1, \ (0 \le \xi_1 < 1),$$
$$\frac{1}{\xi_1} = a_2' = a_2 + \xi_2, \ (0 \le \xi_2 < 1),$$

..... is known as the continued fraction algorithm. The algorithm continues so long as $\xi_n \neq 0$. If we eventually reach a value of n, say N, for which $\xi_N = 0$, the algorithm terminates and $\mathbf{x} = [a_0, a_1, \dots, a_N]$.

In this case x is represented by a simple continued fraction, and is rational. The number a'_n are the complete quotients of the continued fraction.

Theorem 2.1: Any rational number can be represented by a finite simple continued fraction.

Proof: If x is an integer, then $\xi_0 = 0$ and $x = a_0$. If x is not integral, then $x = \frac{h}{k}$, where h and k are integers and k > 1. Since $\frac{h}{k} = a_0 + \xi_0$, $h = a_0 k + \xi_0 k$, a_0 is the quotient, and $k_1 = \xi_0 k$ the remainder, when h is divided by k.

If $\xi_0 \neq 0$ then $a'_1 = \frac{1}{\xi_0} = \frac{k}{k_1}$ and $\frac{k}{k_1} = a_1 + \xi_1$,

 $k = a_1k_1 + \xi_1k_1$; thus a_1 is the quotient, and

 $k_2 = \xi_1 k_1$ the remainder, when k is divided by k_1 . Thus we obtain a series of equations $h = a_0 k + k_1$,

$$\mathbf{k} = a_1 k_1 + k_2, \, k_1 = a_2 k_2 + k_3, \dots$$

Continuing so long as $\xi_n \neq 0$, or what is the same thing, so long as $k_{n+1} \neq 0$.

The non-negative integers $k, k_1, k_2, \dots, \dots$ form a strictly decreasing sequence, and so $k_{n+1} = 0$ for

some N. It follows that $\xi_N = 0$ for some N, and the continued

fraction algorithm terminates. This proves the theorem.

Remark: The system of equations

$$\begin{split} \mathbf{h} &= a_0 \mathbf{k} + k_1 \;, \ (0 < k_1 < k), \\ \mathbf{k} &= a_1 k_1 + k_2, \ (0 < k_2 < \ k_1), \end{split}$$

 $k_{N-2} = a_{N-1}k_{N-1} + k_N, \quad (0 < k_N < k_{N-1}),$

 $k_{N-1} = a_N k_N$ is known as Euclid's algorithm.

3. DIFFERENCE BETWEEN THE FRACTION AND ITS CONVERGENTS:

Suppose N > 1 and n > 0 then by $x = \frac{a'_n p_{n-1} + p_{n-2}}{a'_n q_{n-1} + q_{n-2}}$, $(1 \leq$ $n \leq N-1$) and so

$$\begin{aligned} \mathbf{x} - \frac{p_n}{q_n} &= -\frac{p_n q_{n-1} - p_{n-1} q_n}{q_n \left(a'_{n+1} q_n + q_{n-1}\right)} = \frac{(-1)^n}{q_n \left(a'_{n+1} q_n + q_{n-1}\right)}, \text{ Also } \mathbf{x} - \frac{p_0}{q_0} = \mathbf{x} \\ - a_0 &= \frac{1}{a'_1}. \end{aligned}$$

If we write $q'_1 = a'_1$, $q'_n = a'_n q_{n-1} + q_{n-2}$, $(1 \le n \le N-1)$

(So in particular $q'_N = q_N$), we have the following theorem.

Theorem 3.1: If $1 \le n \le N-1$, then

$$\mathbf{X} - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n \; q'_{n+1}}$$

Proof: $a_{n+1} < a'_{n+1} < a_{n+1} + 1$ for $n \le N - 2$,

by the equation $a_n < a'_n < a_n + 1 \ (0 \le n \le N-1)$, except that $a'_{N-1} = a_{N-1} + 1$

when $a_N = 1$. Hence if we ignore this exceptional case for the moment, we have

$$\begin{aligned} q_1 &= a_1 < a'_1 + 1 \le q_2 \text{ and } q'_{n+1} = a'_{n+1}q_n + q_{n-1} \\ &> a_{n+1}q_n + q_{n-1} = q_{n+1} \\ q'_{n+1} < a_{n+1}q_n + q_{n-1} + q_n = q_{n+1} + q_n \\ &\le a_{n+2}q_{n+1} + q_n = q_{n+2}, \\ \text{for } 1 \le n \le \text{N-2. It follows that } \frac{1}{q_{n+2}} < |p_n - q_n \mathbf{x}| \\ &< \frac{1}{q_{n+1}} \quad (n \le \text{N-2}) \text{ while } |p_{N-1} - q_{N-1}\mathbf{x}| = \frac{1}{q_N}, p_N - q_N \mathbf{x} = 0 \\ \text{in the exceptional case} \end{aligned}$$

$$q_{n+1}' < a_{n+1}q_n + q_{n-1} + q_n = q_{n+1} + q_n$$

 $\leq a_{n+2}q_{n+1} + q_n = q_{n+2}$ must be replaced by

 $q'_{N-1} = (|a_{N-1} + 1) q_{N-2} + q_{N-3} = q_{N-1} + q_{N-2} = q_N$ and the first inequality. In the case $\frac{1}{q_{n+2}} < |p_n - q_n \mathbf{x}| < \frac{1}{q_{n+1}}$ $(n \le N-2)$ by an equality. In this case shows that $|p_n - q_n \mathbf{x}|$ decreases steadily as n increases, Since q_n increases steadily, $|\mathbf{x} - \frac{p_n}{q_n}|$ decreases steadily.

We may sum up the most important conclusion in the following theorem

i.e. If N >1, n >0 then the differences x - $\frac{p_n}{q_n}$, q_n x - $p_n = \frac{(-1)^n \delta_n}{q_{n+1}}$, where $0 < \delta_n < 1 \ (1 \le n \le N-2)$,

 $\delta_{N-1} = 1, |\mathbf{x} - \frac{p_n}{q_n}| \le \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2} \text{ for } n \le N-1 \text{ with inequality}$ in both places except when n = N - 1.

REFERENCES

- Acton, F. S. "Power Series, Continued Fractions, and Rational Approximations." Ch. 11 in Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., 1990.
- [2] Adamchik, V. "Limits of Continued Fractions and Nested Radicals." Mathematica J. 2, 54-57, 1992.
- [3] Dunne, E. and McConnell, M. "Pianos and Continued Fractions." Math. Mag. 72, 104-115, 1999.
- [4] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
- [5] Jones, William B.; Thron, W. J. (1980). Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications. 11. Reading. Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-13510-8.
- [6] Rockett, Andrew M.; Szüsz, Peter (1992). Continued Fractions. World Scientific Press. ISBN 981-02-1047-7.