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Abstract – A "general" continued fraction representation of a real 

number x is one of the form  

𝒙 =  𝒂𝟎 + 
𝒃𝟏

𝒂𝟏+
𝒃𝟐

𝒂𝟐+
𝒃𝟑

𝒂𝟑+⋯………

               + 
𝒃𝒏
𝒂𝑵

 

Where  𝒂𝟎 , 𝒂𝟏, . ... and  𝒃𝟏, 𝒃𝟐 … ..are integers. In this article we  

define convergents of a finite continued fraction and  continued 

fractions with positive quotients and discuss fraction algorithm 

and Euclid’s algorithm. 

Index Terms – Euclid Algorithm, Real number, Fraction. 

1. INTRODUCTION 

Define a function 𝑓(n) = 𝑎0 + 
1

𝑎1+
1

𝑎2+
1

𝑎3+⋯………

               + 
1

𝑎𝑁

 

……………….(a) 

Consisting of N + 1 variables  𝑎0, 𝑎1, … … , 𝑎𝑁 as a finite 

continued fraction. As the representation (a) is cumbersome, 

we shall usually write it as [𝑎0, 𝑎1, … . . , 𝑎𝑛] and we call 

𝑎0, 𝑎1, … . , 𝑎𝑛 the partial quotients or simply the quotients of 

the finite continued fraction. As above we see that [𝑎0] =  
𝑎0

1
 , 

[𝑎0, 𝑎1] = 
𝑎0𝑎1+1

𝑎1
 ,[𝑎0, 𝑎1, 𝑎2] = 

𝑎2𝑎1𝑎0+𝑎2+𝑎0

𝑎2𝑎1+1
 ……. Therefore 

[𝑎0, 𝑎1] = 𝑎0 +
1

𝑎1
  and  

Similarly [𝑎0, 𝑎1, … … , 𝑎𝑛−1, 𝑎𝑛] 

= [𝑎0, 𝑎1, … . . , 𝑎𝑛−2, 𝑎𝑛−1 +
1

𝑎𝑛
]…………..(1.1) 

i.e. [𝑎0, 𝑎1, … … , 𝑎𝑛] = 𝑎0+
1

[𝑎0,𝑎1,……,𝑎𝑛]
  

= [𝑎0,[𝑎0, 𝑎1, … … , 𝑎𝑛]], for 1≤ 𝑛 ≤ N 

Moreover [𝑎0, 𝑎1, … … , 𝑎𝑛] = 

[𝑎0, 𝑎1, … … , 𝑎𝑚−1,[𝑎𝑚, 𝑎𝑚+1, … … , 𝑎𝑛]]  

for 1≤ 𝑛 ≤ N. 

1.1. Definition: The quantity [𝑎0, 𝑎1, … … , 𝑎𝑛] for (1≤ 𝑛 ≤ N) 

is called nth convergent to [𝑎0, 𝑎1, … … , 𝑎𝑁]. Also it is easy 

to find the convergents by means of the following theorem. 

Theorem 1.2: Let 𝑝𝑛 and 𝑞𝑛 be defined as under 𝑝0 = 𝑎0, 𝑝1= 

𝑎1𝑎0 + 1, 𝑝𝑛 = 𝑎𝑛 𝑝𝑛−1 +  𝑝𝑛−2    

(2≤ 𝑛 ≤ N) and  

𝑞1 = 1, 𝑞1= 𝑎1, 𝑞n = 𝑎𝑛 𝑞𝑛−1 +  𝑞𝑛−2   (2≤ 𝑛 ≤ N) then 

[𝑎0, 𝑎1, … … , 𝑎𝑛] = 
𝑝𝑛

𝑞𝑛
. 

Proof: For n=1 and n =1 theorem is obviously true. 

Let suppose that result holds for n ≤ 𝑚, where m < N. Then  

[𝑎0, 𝑎1, … … , 𝑎𝑚−1,𝑎𝑚] = 
𝑝𝑚

𝑞𝑚
 = 

𝑎𝑚 𝑝𝑚−1+ 𝑝𝑚−2

𝑎𝑚 𝑞𝑚−1+𝑞𝑚−2
, and 𝑝𝑚−1, 𝑝𝑚−2, 

𝑞𝑚−1, 𝑞𝑚−2 depend only upon 𝑎0, 𝑎1, … … , 𝑎𝑚−1. 

Hence using (1.1) we get [𝑎0, 𝑎1, … … , 𝑎𝑚−1,𝑎𝑚, 𝑎𝑚+1]  

= [𝑎0, 𝑎1, … … , 𝑎𝑚−1,𝑎𝑚 +
1

𝑎𝑚+1
]  

= 
(𝑎𝑚+

1

𝑎𝑚+1
 )𝑝𝑚−1+ 𝑝𝑚−2

(𝑎𝑚+
1

𝑎𝑚+1
 )𝑞𝑚−1+ 𝑞𝑚−2

 = 
𝑎𝑚+1(𝑎𝑚𝑝𝑚−1+ 𝑝𝑚−2)+𝑝𝑚−1

𝑎𝑚+1(𝑎𝑚𝑞𝑚−1+ 𝑞𝑚−2)+𝑞𝑚−1
 = 

𝑎𝑚+1p𝑚+𝑝𝑚−1

𝑎𝑚+1q𝑚+𝑞𝑚−1
 = 

𝑝𝑚+1

𝑞𝑚+1
 

Hence by induction the theorem is proved. 

Note: From 𝑝0 = 𝑎0, 𝑝1= 𝑎1𝑎0 + 1, 𝑝𝑛 = 𝑎𝑛 𝑝𝑛−1 + 𝑝𝑛−2   (2≤
𝑛 ≤ N) and  

𝑞1 = 1, 𝑞1 = 𝑎1, 𝑞n = 𝑎𝑛 𝑞𝑛−1 +  𝑞𝑛−2   (2≤ 𝑛 ≤ N) it follows 

that  

𝑝𝑛

𝑞𝑛
 = 

𝑎𝑛p𝑛−1+𝑝𝑛−2

𝑎𝑛q𝑛−1+𝑞𝑛−2
  

Also  𝑝𝑛𝑞𝑛−1- 𝑝𝑛−1𝑞n = (𝑎𝑛 𝑝𝑛−1 + 𝑝𝑛−2) 𝑞𝑛−1 

− 𝑝𝑛−1(𝑎𝑛 𝑞𝑛−1 +  𝑞𝑛−2) 

= - (𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1). 

Repeating the argument with n-1, n-2,……,2 in place of n, we 

get 

𝑝𝑛𝑞𝑛−1- 𝑝𝑛−1𝑞n = (−1)𝑛−1 (𝑝1𝑞0-𝑝0𝑞1) = (−1)𝑛−1. 

Also 𝑝𝑛𝑞𝑛−2- 𝑝𝑛−2𝑞n = (𝑎𝑛 𝑝𝑛−1 + 𝑝𝑛−2) 𝑞𝑛−2 -𝑝𝑛−2(𝑎𝑛 

𝑞𝑛−1 +  𝑞𝑛−2) 

= 𝑎𝑛(𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1) =(−1)𝑛−1 𝑎𝑛 . 

Remark: The functions 𝑝𝑛 and 𝑞𝑛 satisfies the following. 

𝑝𝑛𝑞𝑛−1- 𝑝𝑛−1𝑞n = (−1)𝑛−1  or  
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−1

𝑞𝑛−1
 = 

(−1)𝑛−1

𝑞𝑛−1 𝑞𝑛
 

http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/OftheForm.html
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Also they   satisfy 𝑝𝑛𝑞𝑛−2- 𝑝𝑛−2𝑞n = (−1)𝑛−1𝑎𝑛  or  
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−2

𝑞𝑛−2
 

= 
(−1)𝑛−1𝑎𝑛

𝑞𝑛−2 𝑞𝑛
. 

1.3.Definition:  Now we assign numerical values to the 

quotients 𝑎𝑛 so to the fraction  𝑎0 + 
1

𝑎1+
1

𝑎2+
1

𝑎3+⋯………

               + 
1

𝑎𝑁

 and to its 

convergents. 

Now suppose that 𝑎1 > 0,…….., 𝑎N > 0, 𝑎0 may be negative 

, in  this case the continued fraction is said to be simple. Write 

𝑥n = 
𝑝𝑛

𝑞𝑛
, x = 𝑥𝑁 so that the value of the continued fraction is 𝑥𝑁 

or x. Then  

[𝑎0, 𝑎1, … … , 𝑎𝑁] = [𝑎0, 𝑎1, … … , 𝑎𝑛−1,[𝑎𝑛 , 𝑎𝑛+1, … … , 𝑎𝑁]]  

= 
[𝑎𝑛,𝑎𝑛+1,……,𝑎𝑁]𝑝𝑛−1+ 𝑝𝑛−2

[𝑎𝑛,𝑎𝑛+1,……,𝑎𝑁]𝑞𝑛−1+ 𝑞𝑛−2
  for 2≤ 𝑛 ≤ N. 

Note: As every 𝑞𝑛 is positive then from   
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−2

𝑞𝑛−2
 = 

(−1)𝑛−1𝑎𝑛

𝑞𝑛−2 𝑞𝑛
 

and 𝑎1 > 0,…….., 𝑎N > 0, 𝑥n − 𝑥n−2 has the sign of (−1)𝑛. 

Which proves that the even convergents 𝑥2n increase strictly 

with n,  while the odd convergents  𝑥2n+1  decrease strictly. 

Also from 
𝑝𝑛

𝑞𝑛
 - 

𝑝𝑛−1

𝑞𝑛−1
 = 

(−1)𝑛−1

𝑞𝑛−1 𝑞𝑛
 , 𝑥n − 𝑥n−1 has the sign of 

(−1)𝑛−1  

so that 𝑥2m+1 > 𝑥2m contrary if we assume that 𝑥2m+1 ≤ 𝑥2𝜇 

for some m, 𝜇.If m < 𝜇  then from above 𝑥2m+1 < 𝑥2m, and  if 

m < 𝜇    

then 𝑥2𝜇+1 < 𝑥2𝜇which is a contradiction. Hence we say that 

every odd convergent is greater than any even convergent. 

1.4.Definition: If all 𝑎𝑛 are integers then the continued fraction 

is called Simple Fraction. If 𝑝𝑛 and 𝑞𝑛 are integers and 𝑞𝑛 is 

positive then  

[𝑎0, 𝑎1, … … , 𝑎𝑁] =  
𝑝N

𝑞𝑁
 = x, we say that the number x (which is 

necessarily rational) is represented by the continued fraction. 

Theorem 1.5: 𝑞𝑛 ≥ 𝑛, with inequality when n > 3. 

Proof: In the first place, 𝑞0 = 1, 𝑞1 = 𝑎1 ≥ 1. If  n ≥ 2 then 

 𝑞𝑛 =  𝑎𝑛𝑞𝑛−1+ 𝑞𝑛−2 ≥ 𝑞𝑛−1+1 so that 𝑞𝑛 > 𝑞𝑛−1 and 𝑞𝑛 ≥ 𝑛. 

If n > 3, then  

𝑞𝑛 ≥ 𝑞𝑛−1 + 𝑞𝑛−2 > 𝑞𝑛−1+1 ≥ n, and so 𝑞𝑛 > 𝑛. 

1.6.Definition: Any simple continued fraction 

[𝑎0, 𝑎1, … … , 𝑎𝑁] represents a rational number x = 𝑥𝑁 

Theorem 1.7: If x is representable by a simple continued 

fraction with an odd (even) number of convergents, it is also 

representable by one with an even (odd) number. 

Proof: If 𝑎𝑛  ≥ 2  then [𝑎0, 𝑎1, … … , 𝑎𝑛]  

= [𝑎0, 𝑎1, … … , 𝑎𝑛 − 1,1] while, if 𝑎𝑛 = 1, 

[𝑎0, 𝑎1, … … , 𝑎𝑛−1, 1] = [𝑎0, 𝑎1, … … , 𝑎𝑛−2, 𝑎𝑛 + 1] 

 For example [2,2,3] = [2,2,2,1] this choice of alternative 

representations is often useful. We call 𝑎𝑛
′  = 

[𝑎𝑛 , 𝑎𝑛+1, … … , 𝑎𝑁] ( 0 ≤ 𝑛 ≤ N) the nth complete quotient of 

the continued fraction [𝑎0, 𝑎1, … … , 𝑎𝑁]. Thus x = 𝑎0
′ ,   x = 

𝑎1 
′ 𝑎0+ 1

𝑎1 
′  and  

x = 
𝑎𝑛

′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑎𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 ,        

(2 ≤ 𝑛 ≤ N)         …………….(b)                              

Theorem 1.8: 𝑎𝑛 = [𝑎𝑛
′ ], the integral part of 𝑎𝑛

′  except that 

𝑎𝑁−1 = [𝑎𝑁−1] − 1 when 𝑎𝑁 = 1. 

Proof: If N = 0, then 𝑎0  = 𝑎0
′ = [𝑎0

′ ]. If N > 0 then 𝑎𝑛
′ = 𝑎𝑛+ 

1

𝑎𝑛+1
′  (0 ≤ 𝑛 ≤ N-1). 

Now 𝑎𝑛+1
′  > 1 (0 ≤ 𝑛 ≤ N-1) except that 𝑎𝑛+1

′  = 1 when n = 

N -1 and 𝑎𝑁 = 1. 

Hence 𝑎𝑛 < 𝑎𝑛
′  < 𝑎𝑛 + 1 (0 ≤ 𝑛 ≤ N-1) and 𝑎𝑛 = [𝑎𝑛

′ ] for (0 

≤ 𝑛 ≤ N-1) except in the case specified. And in any case 𝑎𝑁 

= 𝑎𝑁
′ = [𝑎𝑁

′ ]. 

Theorem 1.9: If two simple continued fractions 

[𝑎0, 𝑎1, … … , 𝑎𝑁] and [𝑏0, 𝑏1, … … , 𝑏𝑀] have the same value x, 

and 𝑏𝑀 > 1, then M = N and the fractions are identical. 

Proof: When we say that the two continued fractions are 

identical we mean that they are formed by the same sequence 

of partial quotients. 

By the above theorem 𝑎0 = [x] = 𝑏0. Let us suppose that the 

first n partial quotients in the continued fractions are identical 

and that 𝑎𝑛
′  𝑎𝑛𝑑 𝑏𝑛

′  are the nth complete quotients. Then x = 

[𝑎0, 𝑎1, … … , 𝑎𝑛−1, 𝑎𝑛
′ ] = [𝑎0, 𝑎1, … … , 𝑎𝑛−1, 𝑏𝑛

′ ]. 

If n = 1 then 𝑎0 +
1

𝑎1
′  = 𝑎0 +

1

𝑏1
′  , 𝑎1

′ =  𝑏1
′ , and therefore by above 

theorem 𝑎1 =  𝑏1. 

If n > 1, then by 
𝑎𝑛

′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑎𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 = 
𝑏𝑛

′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑏𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 ,  

(𝑎𝑛
′ − 𝑏𝑛

′ )( 𝑝𝑛−1𝑞𝑛−2 − 𝑝𝑛−2𝑞𝑛−1 ) = 0. But 𝑝𝑛−1𝑞𝑛−2 −
𝑝𝑛−2𝑞𝑛−1 = (−1)𝑛 then  

as 𝑝𝑛𝑞𝑛−1 − 𝑝𝑛−1𝑞𝑛 = (−1)𝑛−1 and so 𝑎𝑛
′ =  𝑏𝑛

′ ,  

it follows from the  above theorem  that 𝑎𝑛 =  𝑏𝑛. 

Suppose now for example, that N ≤ M. Then our argument 

shows that 𝑎𝑛 =  𝑏𝑛 for N ≤ M. If M > N then 
𝑝N

𝑞𝑁
 = 

[𝑎0, 𝑎1, … … , 𝑎𝑁] = [𝑎0, 𝑎1, … … , 𝑎N, 𝑏 𝑁+1, … … , 𝑏𝑀] 
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 = 
𝑏𝑁+1

′ 𝑝𝑁+ 𝑝𝑁−1

𝑏𝑁+1
′ 𝑞𝑁+ 𝑞𝑁−1

, Hence by (b) 𝑝𝑁𝑞𝑁−1 − 𝑝N−1𝑞𝑁 = 0 which is 

false. Hence M = N and the fractions are identical. 

2. CONTINUED FRACTION ALGORITHM AND 

EUCLID’S ALGORITHM 

Let x be any real number, and let 𝑎0 = [x]. Then x = 𝑎0+ 𝜉0, 0 

≤ 𝜉0 < 1. 

If 𝜉0 ≠  0, we can write 
1

𝜉0
 = 𝑎1

′ , [𝑎𝑛
′ ] = 𝑎1, 𝑎1

′   

= 𝑎1 + 𝜉1, 0 ≤ 𝜉1 < 1. 

If 𝜉1 ≠  0, we can write 
1

𝜉1
 = 𝑎2

′   = 𝑎2 + 𝜉2,  

0 ≤ 𝜉2 < 1, and so on 

Also 𝑎𝑛
′ = 

1

𝜉n−1
 > 1, and so 𝑎𝑛 ≥ 1, for n≥ 1.  

Thus x = [𝑎0, 𝑎1
′ ] = [𝑎0, 𝑎1 +  

1

𝑎2
′ ] = [𝑎0, 𝑎1, 𝑎2

′ ] = [𝑎0, 𝑎1, 𝑎2, 𝑎3
′ ] 

= …….. where   𝑎0, 𝑎1, 𝑎2,…… are integers and 

𝑎1 > 0, 𝑎2 > 0, … … …. 

The system of equations x = 𝑎0+ 𝜉0, (0 ≤ 𝜉0 < 1),                                

   
1

𝜉0
 = 𝑎1

′ =  𝑎1 + 𝜉1,  (0 ≤ 𝜉1 < 1), 

   
1

𝜉1
 = 𝑎2

′   = 𝑎2 + 𝜉2,  (0 ≤ 𝜉2 < 1), 

                                       ………….. is known as the continued 

fraction algorithm. The algorithm continues so long as 𝜉n ≠ 0. 
If we eventually reach a value of n, say N, for which 𝜉N = 0, 

the algorithm terminates and x = [𝑎0, 𝑎1, … … , 𝑎𝑁]. 

In this case x is represented by a simple continued fraction, and 

is rational. The number  𝑎𝑛
′   are the complete quotients of the 

continued fraction. 

Theorem 2.1: Any rational number can be represented by a 

finite simple continued fraction. 

Proof: If x is an integer, then 𝜉0 = 0 and x =  𝑎0. If x is not 

integral, then x = 
ℎ

𝑘
,  where h and k are integers and k > 1. Since 

ℎ

𝑘
 = 𝑎0+ 𝜉0, h = 𝑎0k + 𝜉0k, 𝑎0 is the quotient, and 𝑘1 = 𝜉0k the 

remainder, when h is divided by k. 

If 𝜉0 ≠ 0 then 𝑎1
′ =  

1

𝜉0
 = 

𝑘

𝑘1
 and 

𝑘

𝑘1
 = 𝑎1 + 𝜉1,  

k = 𝑎1𝑘1 + 𝜉1𝑘1; thus 𝑎1 is the quotient, and 

 𝑘2 = 𝜉1𝑘1 the remainder, when k is divided by 𝑘1.Thus we 

obtain a series of equations h = 𝑎0k + 𝑘1 ,         

k = 𝑎1𝑘1 + 𝑘2, 𝑘1 = 𝑎2𝑘2 + 𝑘3,……………. 

Continuing so long as 𝜉n ≠ 0, or what is the same thing, so long 

as 𝑘𝑛+1 ≠ 0. 

The non-negative integers k, 𝑘1, 𝑘2, … … …. form a strictly 

decreasing sequence, and so 𝑘𝑛+1 = 0 for 

some N. It follows that 𝜉𝑁 = 0 for some N, and the continued 

fraction algorithm terminates. This proves the theorem. 

Remark: The system of equations  

      h = 𝑎0k + 𝑘1 ,   (0 < 𝑘1 < 𝑘), 

     k = 𝑎1𝑘1 + 𝑘2,   (0 < 𝑘2 <  𝑘1), 

……………………………….. 

𝑘𝑁−2 = 𝑎𝑁−1𝑘𝑁−1 + 𝑘𝑁 ,        (0 < 𝑘𝑁 <  𝑘𝑁−1), 

𝑘𝑁−1 = 𝑎𝑁𝑘𝑁 is known as Euclid’s algorithm. 

3. DIFFERENCE BETWEEN THE FRACTION AND 

ITS CONVERGENTS: 

Suppose N > 1 and n > 0 then by x = 
𝑎𝑛

′ 𝑝𝑛−1+ 𝑝𝑛−2

𝑎𝑛
′ 𝑞𝑛−1+ 𝑞𝑛−2

 ,       (1 ≤

𝑛 ≤ N-1)  and so  

x - 
𝑝𝑛

𝑞𝑛
 = - 

𝑝𝑛𝑞𝑛−1− 𝑝𝑛−1 𝑞𝑛

𝑞𝑛 (𝑎𝑛+1 
′ 𝑞𝑛+ 𝑞𝑛−1 )

 = 
(−1)𝑛

𝑞𝑛 (𝑎𝑛+1 
′ 𝑞𝑛+ 𝑞𝑛−1 )

 , Also x - 
𝑝0

𝑞0
 = x 

- 𝑎0 = 
1

𝑎1
′ . 

If we write 𝑞1
′  = 𝑎1

′ , 𝑞𝑛
′  = 𝑎𝑛

′ 𝑞𝑛−1 +  𝑞𝑛−2,      (1 ≤ 𝑛 ≤ N-1)   

(So in particular 𝑞𝑁
′  = 𝑞𝑁), we have the following theorem. 

Theorem 3.1: If 1 ≤ 𝑛 ≤ N-1, then    

 x - 
𝑝𝑛

𝑞𝑛
 =  

(−1)𝑛

𝑞𝑛  𝑞𝑛+1 
′  

Proof: 𝑎𝑛+1 <  𝑎𝑛+1 
′ < 𝑎𝑛+1 +1 for n ≤ 𝑁 − 2,  

by  the equation 𝑎𝑛 < 𝑎𝑛
′  < 𝑎𝑛 + 1 (0 ≤ 𝑛 ≤ N-1), except that 

𝑎𝑁−1
′  = 𝑎𝑁−1 +1 

when 𝑎𝑁 =1. Hence if we ignore this exceptional case for the 

moment, we have  

𝑞1 =𝑎1 < 𝑎1
′  + 1≤  𝑞2 and 𝑞𝑛+1 

′  = 𝑎𝑛+1
′ 𝑞𝑛 + 𝑞𝑛−1  

> 𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1 =  𝑞𝑛+1 

𝑞𝑛+1
′  < 𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1+ 𝑞𝑛 = 𝑞𝑛+1+𝑞𝑛  

≤ 𝑎𝑛+2𝑞𝑛+1 + 𝑞𝑛 = 𝑞𝑛+2,  

for 1 ≤ 𝑛 ≤ N-2. It  follows that 
1

𝑞𝑛+2
 < |𝑝𝑛 − 𝑞𝑛x|  

< 
1

𝑞𝑛+1
  (𝑛 ≤ N-2) while |𝑝𝑁−1 − 𝑞𝑁−1x| = 

1

𝑞𝑁
, 𝑝𝑁  − 𝑞𝑁x = 0  

in the exceptional case  

𝑞𝑛+1
′  < 𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1+ 𝑞𝑛 = 𝑞𝑛+1+𝑞𝑛  
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≤ 𝑎𝑛+2𝑞𝑛+1 + 𝑞𝑛 = 𝑞𝑛+2 must be replaced by  

𝑞𝑁−1 
′ = (|𝑎𝑁−1 + 1) 𝑞𝑁−2+ 𝑞𝑁−3 = 𝑞𝑁−1+ 𝑞𝑁−2 = 𝑞𝑁 and the 

first inequality. In the case 
1

𝑞𝑛+2
 < |𝑝𝑛 − 𝑞𝑛x| < 

1

𝑞𝑛+1
  (𝑛 ≤ N-

2) by an equality. In this case shows that |𝑝𝑛 − 𝑞𝑛x| decreases  

steadily as n increases,  Since 𝑞𝑛 increases steadily, |x - 
𝑝𝑛

𝑞𝑛
| 

decreases steadily.  

We may sum up the most important conclusion in the following 

theorem 

i.e. If N >1, n >0 then the differences x - 
𝑝𝑛

𝑞𝑛
, 𝑞𝑛x - 𝑝𝑛 = 

(−1)𝑛𝛿𝑛

𝑞𝑛+1
, 

where 0 < 𝛿𝑛 < 1 (1 ≤ 𝑛 ≤ N-2 ),  

𝛿𝑁−1 = 1, |x - 
𝑝𝑛

𝑞𝑛
| ≤  

1

𝑞𝑛𝑞𝑛+1
  < 

1

𝑞𝑛 
2  for n ≤ N-1 with inequality 

in both places except when n = N – 1. 
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