Continued Finite Fractions and Euclid's Algorithm

Parvinder Singh
P.G. Department of Mathematics, S.G.G. S. Khalsa College, Mahilpur. (Hoshiarpur).

Abstract-A "general" continued fraction representation of a real number x is one of the form
$x=a_{0}+\frac{b_{1}}{a_{1}+\frac{b_{2}}{a_{2}+\frac{b_{3}}{a_{3}+\cdots+\cdots \cdots}}+\frac{b_{n}}{a_{N}}}$

Where a_{0}, a_{1}, \ldots and $b_{1}, b_{2} \ldots$ are integers. In this article we define convergents of a finite continued fraction and continued fractions with positive quotients and discuss fraction algorithm and Euclid's algorithm.
Index Terms - Euclid Algorithm, Real number, Fraction.

1. INTRODUCTION

Define a function $f(\mathrm{n})=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots \cdots \cdots \cdots}}+\frac{1}{a_{N}}}$

Consisting of $\mathrm{N}+1$ variables $a_{0}, a_{1}, \ldots \ldots, a_{N}$ as a finite continued fraction. As the representation (a) is cumbersome, we shall usually write it as $\left[a_{0}, a_{1}, \ldots ., a_{n}\right]$ and we call $a_{0}, a_{1}, \ldots, a_{n}$ the partial quotients or simply the quotients of the finite continued fraction. As above we see that $\left[a_{0}\right]=\frac{a_{0}}{1}$, $\left[a_{0}, a_{1}\right]=\frac{a_{0} a_{1}+1}{a_{1}},\left[a_{0}, a_{1}, a_{2}\right]=\frac{a_{2} a_{1} a_{0}+a_{2}+a_{0}}{a_{2} a_{1}+1} \ldots \ldots$. Therefore $\left[a_{0}, a_{1}\right]=a_{0}+\frac{1}{a_{1}}$ and
Similarly $\left[a_{0}, a_{1}, \ldots \ldots, a_{n-1}, a_{n}\right]$
$=\left[a_{0}, a_{1}, \ldots ., a_{n-2}, a_{n-1}+\frac{1}{a_{n}}\right]$.
i.e. $\left[a_{0}, a_{1}, \ldots \ldots, a_{n}\right]=a_{0}+\frac{1}{\left[a_{0}, a_{1}, \ldots . . ., a_{n}\right]}$
$=\left[a_{0},\left[a_{0}, a_{1}, \ldots \ldots, a_{n}\right]\right]$, for $1 \leq n \leq \mathrm{N}$
Moreover $\quad\left[a_{0}, a_{1}, \ldots \ldots, a_{n}\right]=$
$\left[a_{0}, a_{1}, \ldots \ldots, a_{m-1,[}\left[a_{m}, a_{m+1}, \ldots \ldots, a_{n}\right]\right]$
for $1 \leq n \leq \mathrm{N}$.
1.1. Definition: The quantity $\left[a_{0}, a_{1}, \ldots \ldots, a_{n}\right]$ for $(1 \leq n \leq \mathbf{N})$ is called nth convergent to $\left[a_{0}, a_{1}, \ldots, . . a_{N}\right]$. Also it is easy to find the convergents by means of the following theorem.
Theorem 1.2: Let p_{n} and q_{n} be defined as under $p_{0}=a_{0}, p_{1}=$ $a_{1} a_{0}+1, p_{n}=a_{n} p_{n-1}+p_{n-2}$
$(2 \leq n \leq \mathrm{N})$ and
$q_{1}=1, q_{1}=a_{1}, q_{\mathrm{n}}=a_{n} q_{n-1}+q_{n-2}(2 \leq n \leq \mathrm{N})$ then $\left[a_{0}, a_{1}, \ldots \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$.
Proof: For $\mathrm{n}=1$ and $\mathrm{n}=1$ theorem is obviously true.
Let suppose that result holds for $\mathrm{n} \leq m$, where $\mathrm{m}<\mathrm{N}$. Then
$\left[a_{0}, a_{1}, \ldots \ldots, a_{m-1}, a_{m}\right]=\frac{p_{m}}{q_{m}}=\frac{a_{m} p_{m-1+} p_{m-2}}{a_{m} q_{m-1}+q_{m-2}}$, and p_{m-1}, p_{m-2},
q_{m-1}, q_{m-2} depend only upon $a_{0}, a_{1}, \ldots \ldots, a_{m-1}$.
Hence using (1.1) we get $\left[a_{0}, a_{1}, \ldots \ldots, a_{m-1}, a_{m}, a_{m+1}\right]$
$=\left[a_{0}, a_{1}, \ldots \ldots, a_{m-1}, a_{m}+\frac{1}{a_{m+1}}\right]$
$=\frac{\left(a_{m}+\frac{1}{a_{m+1}}\right) p_{m-1}+p_{m-2}}{\left(a_{m}+\frac{1}{a_{m+1}}\right) q_{m-1}+q_{m-2}}=\frac{a_{m+1}\left(a_{m} p_{m-1}+p_{m-2}\right)+p_{m-1}}{a_{m+1}\left(a_{m} q_{m-1}+q_{m-2}\right)+q_{m-1}}=$ $\frac{a_{m+1} \mathrm{p}_{m}+p_{m-1}}{a_{m+1} \mathrm{q}_{m}+q_{m-1}}=\frac{p_{m+1}}{q_{m+1}}$

Hence by induction the theorem is proved.
Note: From $p_{0}=a_{0}, p_{1}=a_{1} a_{0}+1, p_{n}=a_{n} p_{n-1}+p_{n-2} \quad(2 \leq$ $n \leq \mathrm{N}$) and
$q_{1}=1, q_{1}=a_{1}, q_{\mathrm{n}}=a_{n} q_{n-1}+q_{n-2} \quad(2 \leq n \leq \mathrm{N})$ it follows that
$\frac{p_{n}}{q_{n}}=\frac{a_{n} \mathrm{p}_{n-1}+p_{n-2}}{a_{n} \mathrm{q}_{n-1}+q_{n-2}}$
Also $p_{n} q_{n-1^{-}} p_{n-1} q_{\mathrm{n}}=\left(a_{n} p_{n-1}+p_{n-2}\right) q_{n-1}$
$-p_{n-1}\left(a_{n} q_{n-1}+q_{n-2}\right)$
$=-\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)$.
Repeating the argument with $\mathrm{n}-1, \mathrm{n}-2, \ldots \ldots, 2$ in place of n , we get
$p_{n} q_{n-1^{-}} p_{n-1} q_{\mathrm{n}}=(-1)^{n-1}\left(p_{1} q_{0}-p_{0} q_{1}\right)=(-1)^{n-1}$.
Also $p_{n} q_{n-2^{-}} p_{n-2} q_{\mathrm{n}}=\left(a_{n} p_{n-1}+p_{n-2}\right) q_{n-2}-p_{n-2}\left(a_{n}\right.$ $\left.q_{n-1}+q_{n-2}\right)$
$=a_{n}\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=(-1)^{n-1} a_{n}$.
Remark: The functions p_{n} and q_{n} satisfies the following.
$p_{n} q_{n-1^{-}} p_{n-1} q_{\mathrm{n}}=(-1)^{n-1}$ or $\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n-1}}{q_{n-1} q_{n}}$

Also they satisfy $p_{n} q_{n-2}-p_{n-2} q_{\mathrm{n}}=(-1)^{n-1} a_{n}$ or $\frac{p_{n}}{q_{n}}-\frac{p_{n-2}}{q_{n-2}}$ $=\frac{(-1)^{n-1} a_{n}}{q_{n-2} q_{n}}$.
1.3.Definition: Now we assign numerical values to the quotients a_{n} so to the fraction $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots \cdots \cdots \cdots}+\frac{1}{a_{N}}}}$ and to its convergents.

Now suppose that $a_{1}>0, \ldots \ldots, a_{\mathrm{N}}>0, a_{0}$ may be negative , in this case the continued fraction is said to be simple. Write $x_{\mathrm{n}}=\frac{p_{n}}{q_{n}}, \mathrm{x}=x_{N}$ so that the value of the continued fraction is x_{N} or x . Then
$\left[a_{0}, a_{1}, \ldots \ldots, a_{N}\right]=\left[a_{0}, a_{1}, \ldots \ldots, a_{n-1,}\left[a_{n}, a_{n+1}, \ldots, . . a_{N}\right]\right]$
$=\frac{\left[a_{n}, a_{n+1}, \ldots \ldots, a_{N}\right] p_{n-1}+p_{n-2}}{\left[a_{n}, a_{n+1}, \ldots \ldots, a_{N}\right] q_{n-1}+q_{n-2}}$ for $2 \leq n \leq \mathrm{N}$.
Note: As every q_{n} is positive then from $\frac{p_{n}}{q_{n}}-\frac{p_{n-2}}{q_{n-2}}=\frac{(-1)^{n-1} a_{n}}{q_{n-2} q_{n}}$ and $a_{1}>0, \ldots \ldots, a_{\mathrm{N}}>0, x_{\mathrm{n}}-x_{\mathrm{n}-2}$ has the sign of $(-1)^{n}$. Which proves that the even convergents $x_{2 n}$ increase strictly with n , while the odd convergents $x_{2 \mathrm{n}+1}$ decrease strictly.

Also from $\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n-1}}{q_{n-1} q_{n}}, x_{\mathrm{n}}-x_{\mathrm{n}-1}$ has the sign of $(-1)^{n-1}$
so that $x_{2 \mathrm{~m}+1}>x_{2 \mathrm{~m}}$ contrary if we assume that $x_{2 \mathrm{~m}+1} \leq x_{2 \mu}$ for some m, μ.If $\mathrm{m}<\mu$ then from above $x_{2 \mathrm{~m}+1}<x_{2 \mathrm{~m}}$, and if $\mathrm{m}<\mu$
then $x_{2 \mu+1}<x_{2 \mu}$ which is a contradiction. Hence we say that every odd convergent is greater than any even convergent.
1.4.Definition: If all a_{n} are integers then the continued fraction is called Simple Fraction. If p_{n} and q_{n} are integers and q_{n} is positive then
$\left[a_{0}, a_{1}, \ldots \ldots, a_{N}\right]=\frac{p_{\mathrm{N}}}{q_{N}}=\mathrm{x}$, we say that the number x (which is necessarily rational) is represented by the continued fraction.

Theorem 1.5: $q_{n} \geq n$, with inequality when $\mathrm{n}>3$.
Proof: In the first place, $q_{0}=1, q_{1}=a_{1} \geq 1$. If $\mathrm{n} \geq 2$ then
$q_{n}=a_{n} q_{n-1}+q_{n-2} \geq q_{n-1}+1$ so that $q_{n}>q_{n-1}$ and $q_{n} \geq n$. If $n>3$, then
$q_{n} \geq q_{n-1}+q_{n-2}>q_{n-1}+1 \geq \mathrm{n}$, and so $q_{n}>n$.
1.6.Definition: Any simple continued fraction $\left[a_{0}, a_{1}, \ldots \ldots, a_{N}\right]$ represents a rational number $\mathrm{x}=x_{N}$

Theorem 1.7: If x is representable by a simple continued fraction with an odd (even) number of convergents, it is also representable by one with an even (odd) number.

Proof: If $a_{n} \geq 2$ then $\left[a_{0}, a_{1}, \ldots \ldots, a_{n}\right.$]
$=\left[a_{0}, a_{1}, \ldots \ldots, a_{n}-1,1\right]$ while, if $a_{n}=1$,
$\left[a_{0}, a_{1}, \ldots \ldots, a_{n-1}, 1\right]=\left[a_{0}, a_{1}, \ldots \ldots, a_{n-2}, a_{n}+1\right]$
For example $[2,2,3]=[2,2,2,1]$ this choice of alternative representations is often useful. We call $a_{n}^{\prime}=$ $\left[a_{n}, a_{n+1}, \ldots \ldots, a_{N}\right](0 \leq n \leq \mathrm{N})$ the nth complete quotient of the continued fraction $\left[a_{0}, a_{1}, \ldots \ldots, a_{N}\right]$. Thus $\mathrm{x}=a_{0}^{\prime}, \quad \mathrm{x}=$ $\frac{a_{1}^{\prime} a_{0}+1}{a_{1}^{\prime}}$ and
$\mathrm{x}=\frac{a_{n}^{\prime} p_{n-1}+p_{n-2}}{a_{n}^{\prime} q_{n-1}+q_{n-2}}$,
$(2 \leq n \leq \mathrm{N})$
Theorem 1.8: $a_{n}=\left[a_{n}^{\prime}\right]$, the integral part of a_{n}^{\prime} except that $a_{N-1}=\left[a_{N-1}\right]-1$ when $a_{N}=1$.

Proof: If $\mathrm{N}=0$, then $a_{0}=a_{0}^{\prime}=\left[a_{0}^{\prime}\right]$. If $\mathrm{N}>0$ then $a_{n}^{\prime}=a_{n}+$ $\frac{1}{a_{n+1}^{\prime}}(0 \leq n \leq \mathrm{N}-1)$.
Now $a_{n+1}^{\prime}>1(0 \leq n \leq \mathrm{N}-1)$ except that $a_{n+1}^{\prime}=1$ when $\mathrm{n}=$ $\mathrm{N}-1$ and $a_{N}=1$.
Hence $a_{n}<a_{n}^{\prime}<a_{n}+1(0 \leq n \leq \mathrm{N}-1)$ and $a_{n}=\left[a_{n}^{\prime}\right]$ for $(0$ $\leq n \leq \mathrm{N}-1)$ except in the case specified. And in any case a_{N} $=a_{N}^{\prime}=\left[a_{N}^{\prime}\right]$.

Theorem 1.9: If two simple continued fractions $\left[a_{0}, a_{1}, \ldots \ldots, a_{N}\right]$ and $\left[b_{0}, b_{1}, \ldots \ldots, b_{M}\right.$] have the same value x , and $b_{M}>1$, then $\mathrm{M}=\mathrm{N}$ and the fractions are identical.

Proof: When we say that the two continued fractions are identical we mean that they are formed by the same sequence of partial quotients.

By the above theorem $a_{0}=[\mathrm{x}]=b_{0}$. Let us suppose that the first n partial quotients in the continued fractions are identical and that a_{n}^{\prime} and b_{n}^{\prime} are the nth complete quotients. Then $\mathrm{x}=$ $\left[a_{0}, a_{1}, \ldots \ldots, a_{n-1}, a_{n}^{\prime}\right]=\left[a_{0}, a_{1}, \ldots \ldots, a_{n-1}, b_{n}^{\prime}\right]$.
If $\mathrm{n}=1$ then $a_{0}+\frac{1}{a_{1}^{\prime}}=a_{0}+\frac{1}{b_{1}^{\prime}}, a_{1}^{\prime}=b_{1}^{\prime}$, and therefore by above theorem $a_{1}=b_{1}$.

If $\mathrm{n}>1$, then by $\frac{a_{n}^{\prime} p_{n-1}+p_{n-2}}{a_{n}^{\prime} q_{n-1}+q_{n-2}}=\frac{b_{n}^{\prime} p_{n-1}+p_{n-2}}{b_{n}^{\prime} q_{n-1}+q_{n-2}}$,
$\left(a_{n}^{\prime}-b_{n}^{\prime}\right)\left(p_{n-1} q_{n-2}-p_{n-2} q_{n-1}\right)=0$. But $p_{n-1} q_{n-2}-$ $p_{n-2} q_{n-1}=(-1)^{n}$ then
as $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}$ and so $a_{n}^{\prime}=b_{n}^{\prime}$,
it follows from the above theorem that $a_{n}=b_{n}$.
Suppose now for example, that $\mathrm{N} \leq \mathrm{M}$. Then our argument shows that $a_{n}=b_{n}$ for $\mathrm{N} \leq \mathrm{M}$. If $\mathrm{M}>\mathrm{N}$ then $\frac{p_{\mathrm{N}}}{q_{N}}=$ $\left[a_{0}, a_{1}, \ldots \ldots, a_{N}\right]=\left[a_{0}, a_{1}, \ldots \ldots, a_{\mathrm{N}}, b_{N+1}, \ldots \ldots, b_{M}\right]$
$=\frac{b_{N+1}^{\prime} p_{N}+p_{N-1}}{b_{N+1}^{\prime} q_{N}+q_{N-1}}$, Hence by (b) $p_{N} q_{N-1}-p_{N-1} q_{N}=0$ which is false. Hence $\mathrm{M}=\mathrm{N}$ and the fractions are identical.

2. CONTINUED FRACTION ALGORITHM AND EUCLID'S ALGORITHM

Let x be any real number, and let $a_{0}=[\mathrm{x}]$. Then $\mathrm{x}=a_{0}+\xi_{0}, 0$ $\leq \xi_{0}<1$.
If $\xi_{0} \neq 0$, we can write $\frac{1}{\xi_{0}}=a_{1}^{\prime},\left[a_{n}^{\prime}\right]=a_{1}, a_{1}^{\prime}$
$=a_{1}+\xi_{1}, 0 \leq \xi_{1}<1$.
If $\xi_{1} \neq 0$, we can write $\frac{1}{\xi_{1}}=a_{2}^{\prime}=a_{2}+\xi_{2}$,
$0 \leq \xi_{2}<1$, and so on
Also $a_{n}^{\prime}=\frac{1}{\xi_{\mathrm{n}-1}}>1$, and so $a_{n} \geq 1$, for $\mathrm{n} \geq 1$.
Thus $\mathrm{x}=\left[a_{0}, a_{1}^{\prime}\right]=\left[a_{0}, a_{1}+\frac{1}{a_{2}^{\prime}}\right]=\left[a_{0}, a_{1}, a_{2}^{\prime}\right]=\left[a_{0}, a_{1}, a_{2}, a_{3}^{\prime}\right]$
$=\ldots \ldots$. where $a_{0}, a_{1}, a_{2}, \ldots \ldots$ are integers and
$a_{1}>0, a_{2}>0, \ldots \ldots \ldots$.
The system of equations $\mathrm{x}=a_{0}+\xi_{0},\left(0 \leq \xi_{0}<1\right)$,

$$
\begin{aligned}
& \frac{1}{\xi_{0}}=a_{1}^{\prime}=a_{1}+\xi_{1},\left(0 \leq \xi_{1}<1\right), \\
& \frac{1}{\xi_{1}}=a_{2}^{\prime}=a_{2}+\xi_{2},\left(0 \leq \xi_{2}<1\right),
\end{aligned}
$$

is known as the continued fraction algorithm. The algorithm continues so long as $\xi_{\mathrm{n}} \neq 0$. If we eventually reach a value of n, say N, for which $\xi_{N}=0$, the algorithm terminates and $\mathrm{x}=\left[a_{0}, a_{1}, \ldots \ldots, a_{N}\right]$.
In this case x is represented by a simple continued fraction, and is rational. The number a_{n}^{\prime} are the complete quotients of the continued fraction.

Theorem 2.1: Any rational number can be represented by a finite simple continued fraction.
Proof: If x is an integer, then $\xi_{0}=0$ and $\mathrm{x}=a_{0}$. If x is not integral, then $\mathrm{x}=\frac{h}{k}$, where h and k are integers and $\mathrm{k}>1$. Since $\frac{h}{k}=a_{0}+\xi_{0}, \mathrm{~h}=a_{0} \mathrm{k}+\xi_{0} \mathrm{k}, a_{0}$ is the quotient, and $k_{1}=\xi_{0} \mathrm{k}$ the remainder, when h is divided by k .
If $\xi_{0} \neq 0$ then $a_{1}^{\prime}=\frac{1}{\xi_{0}}=\frac{k}{k_{1}}$ and $\frac{k}{k_{1}}=a_{1}+\xi_{1}$,
$\mathrm{k}=a_{1} k_{1}+\xi_{1} k_{1}$; thus a_{1} is the quotient, and
$k_{2}=\xi_{1} k_{1}$ the remainder, when k is divided by k_{1}. Thus we obtain a series of equations $\mathrm{h}=a_{0} \mathrm{k}+k_{1}$,
$\mathrm{k}=a_{1} k_{1}+k_{2}, k_{1}=a_{2} k_{2}+k_{3}$, \qquad

Continuing so long as $\xi_{\mathrm{n}} \neq 0$, or what is the same thing, so long as $k_{n+1} \neq 0$.
The non-negative integers $\mathrm{k}, k_{1}, k_{2}, \ldots \ldots \ldots$ form a strictly decreasing sequence, and so $k_{n+1}=0$ for
some N . It follows that $\xi_{N}=0$ for some N , and the continued fraction algorithm terminates. This proves the theorem.
Remark: The system of equations

$$
\begin{gathered}
\mathrm{h}=a_{0} \mathrm{k}+k_{1}, \quad\left(0<k_{1}<k\right) \\
\mathrm{k}=a_{1} k_{1}+k_{2}, \quad\left(0<k_{2}<k_{1}\right),
\end{gathered}
$$

$k_{N-2}=a_{N-1} k_{N-1}+k_{N}, \quad\left(0<k_{N}<k_{N-1}\right)$,
$k_{N-1}=a_{N} k_{N}$ is known as Euclid's algorithm.

3. DIFFERENCE BETWEEN THE FRACTION AND ITS CONVERGENTS:

Suppose $\mathrm{N}>1$ and $\mathrm{n}>0$ then by $\mathrm{x}=\frac{a_{n}^{\prime} p_{n-1}+p_{n-2}}{a_{n}^{\prime} q_{n-1}+q_{n-2}}, \quad(1 \leq$ $n \leq \mathrm{N}-1)$ and so
$\mathrm{x}-\frac{p_{n}}{q_{n}}=-\frac{p_{n} q_{n-1}-p_{n-1} q_{n}}{q_{n}\left(a_{n+1}^{\prime} q_{n}+q_{n-1}\right)}=\frac{(-1)^{n}}{q_{n}\left(a_{n+1}^{\prime} q_{n}+q_{n-1}\right)}$, Also $\mathrm{x}-\frac{p_{0}}{q_{0}}=\mathrm{x}$ - $a_{0}=\frac{1}{a_{1}^{\prime}}$.

If we write $q_{1}^{\prime}=a_{1}^{\prime}, q_{n}^{\prime}=a_{n}^{\prime} q_{n-1}+q_{n-2}, \quad(1 \leq n \leq \mathrm{N}-1)$
(So in particular $q_{N}^{\prime}=q_{N}$), we have the following theorem.
Theorem 3.1: If $1 \leq n \leq N-1$, then
$\mathrm{x}-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n}}{q_{n} q_{n+1}^{\prime}}$
Proof: $a_{n+1}<a_{n+1}^{\prime}<a_{n+1}+1$ for $\mathrm{n} \leq N-2$,
by the equation $a_{n}<a_{n}^{\prime}<a_{n}+1(0 \leq n \leq N-1)$, except that $a_{N-1}^{\prime}=a_{N-1}+1$
when $a_{N}=1$. Hence if we ignore this exceptional case for the moment, we have
$q_{1}=a_{1}<a_{1}^{\prime}+1 \leq q_{2}$ and $q_{n+1}^{\prime}=a_{n+1}^{\prime} q_{n}+q_{n-1}$
$>a_{n+1} q_{n}+q_{n-1}=q_{n+1}$
$q_{n+1}^{\prime}<a_{n+1} q_{n}+q_{n-1}+q_{n}=q_{n+1}+q_{n}$
$\leq a_{n+2} q_{n+1}+q_{n}=q_{n+2}$,
for $1 \leq n \leq \mathrm{N}$-2. It follows that $\frac{1}{q_{n+2}}<\left|p_{n}-q_{n} \mathrm{x}\right|$
$<\frac{1}{q_{n+1}}(n \leq \mathrm{N}-2)$ while $\left|p_{N-1}-q_{N-1} \mathrm{x}\right|=\frac{1}{q_{N}}, p_{N}-q_{N} \mathrm{x}=0$
in the exceptional case
$q_{n+1}^{\prime}<a_{n+1} q_{n}+q_{n-1}+q_{n}=q_{n+1}+q_{n}$
$\leq a_{n+2} q_{n+1}+q_{n}=q_{n+2}$ must be replaced by
$q_{N-1}^{\prime}=\left(\mid a_{N-1}+1\right) q_{N-2}+q_{N-3}=q_{N-1}+q_{N-2}=q_{N}$ and the first inequality. In the case $\frac{1}{q_{n+2}}<\left|p_{n}-q_{n} \mathrm{x}\right|<\frac{1}{q_{n+1}}(n \leq \mathrm{N}$ 2) by an equality. In this case shows that $\left|p_{n}-q_{n} \mathrm{x}\right|$ decreases steadily as n increases, Since q_{n} increases steadily, $\left|\mathrm{x}-\frac{p_{n}}{q_{n}}\right|$ decreases steadily.

We may sum up the most important conclusion in the following theorem
i.e. If $\mathrm{N}>1, \mathrm{n}>0$ then the differences $\mathrm{x}-\frac{p_{n}}{q_{n}}, q_{n} \mathrm{x}-p_{n}=\frac{(-1)^{n} \delta_{n}}{q_{n+1}}$, where $0<\delta_{n}<1(1 \leq n \leq N-2)$,
$\delta_{N-1}=1,\left|\mathrm{x}-\frac{p_{n}}{q_{n}}\right| \leq \frac{1}{q_{n} q_{n+1}}<\frac{1}{q_{n}^{2}}$ for $\mathrm{n} \leq \mathrm{N}-1$ with inequality in both places except when $\mathrm{n}=\mathrm{N}-1$.

REFERENCES

[1] Acton, F. S. "Power Series, Continued Fractions, and Rational Approximations." Ch. 11 in Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., 1990.
[2] Adamchik, V. "Limits of Continued Fractions and Nested Radicals." Mathematica J. 2, 54-57, 1992.
[3] Dunne, E. and McConnell, M. "Pianos and Continued Fractions." Math. Mag. 72, 104-115, 1999.
[4] H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948 ISBN 0-8284-0207-8
[5] Jones, William B.; Thron, W. J. (1980). Continued Fractions: Analytic Theory and Applications. Encyclopedia of Mathematics and its Applications. 11. Reading. Massachusetts: Addison-Wesley Publishing Company. ISBN 0-201-13510-8.
[6] Rockett, Andrew M.; Szüsz, Peter (1992). Continued Fractions. World Scientific Press. ISBN 981-02-1047-7.

