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Abstract— A ""general’* continued fraction representation of a real
number x is one of the form

X = a0+

Where aqg,aq, ...and by, b, ....are integers. In this article we
define convergents of a finite continued fraction and continued
fractions with positive quotients and discuss fraction algorithm
and Euclid’s algorithm.

Index Terms — Euclid Algorithm, Real number, Fraction.
1. INTRODUCTION

Define a function f(n) = a, + p——
L R e —

................... (a)

Consisting of N + 1 variables ag, ay, ... ... ,ay as a finite

continued fraction. As the representation (a) is cumbersome,
we shall usually write it as [ag,aq,.....,a,] and we call
ao, a4, --- ., a, the partial quotients or simply the quotients of
the finite continued fraction. As above we see that [a,] = % :

apgag+1 azajaptaz+ag

[ag,a{] = Jag, ag,a;] = sl Therefore
[ag,a1] = ag + = and
az
Similarly [ag, a4, ... ... ,Ap_1, an]
1

=[ag, Ay, vy Apeny Qg + a—] .............. (1.1)
. 1
i.e. [ag,aq, .. ... ,an] = a0+[a0,a1 ________ =
=[ag.[ag, ay, - o ,a,]], forl<n <N
Moreover [ag, aq, ... .. , 4] =
[ag, aq, .. ... » A1, [ Ay A1y eon eee ,an]]
for1<n <N.
1.1. Definition: The quantity [a,, a4, ... ... ,a,] for (1< n <N)

is called nth convergent to [a,, a4, -.. ... ,ay]. Also it is easy

to find the convergents by means of the following theorem.

Theorem 1.2: Let p,, and q,, be defined as under p, = ay, p,=
a,aop + 1' Pn = Qp Pn-1 + Pn-2
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(2<n <N)and
¢ =1 ;= ay, qn = Ay Qo1 Gz (2<n < N) then

Proof: For n=1 and n =1 theorem is obviously true.

Let suppose that result holds for n < m, where m < N. Then

— Pm _ Am Pm-1+Pm-2

g, Ay, wen e Ap—1am] === and p,,,— _
[ 0, %1 »¥m-1, m] am aQO—rHZm—z, Pm-1Pm-2,

Qm-1, 9m-» depend only upon a,, ay, ... ... A1

= [ag, aq, v oo y Q1,0 t

(am +ﬁ )pm—l +DPm-2

1
amt——)
( M amy1

Am+1Pm+tPm-1 _ Pm+1

am+1(@mPm-1+ Pm-2)+Pm-1

am+1(@mdm-1+ Gm-2)+qm-1

qm-1+ qm-2

Am+19m+tdm-1  dm+1

Hence by induction the theorem is proved.

Note: Frompy = ag, p1=a1a9 + 1, pp =y P1 + Puz (2<
n < N) and

q1=1,41=a1,qn = Ay Gn-1+ qu—z (2<n < N) it follows
that

Pn _ AnPn-1+Pn—2
dn  Andn-1*tqdn-2

AlSO pyqn-1-Pn-1qn = (@n Pn-1 + Pn-2) dn-1

— Pn-1(an qn-1+ qn-2)

= - (Pn-19n-2 = Pn-2qn-1)-

Repeating the argument with n-1, n-2,...... ,2 in place of n, we
get

Pnln-1"Pn-1qn = (D" (P1d0-Poqs) = (=)™ .

AlSO ppGn-z- Pn—2qn = (an Pn-1+ Pp-2) Gn-2 Pn-2(an
dn-1t dn-2)

= an(Pn-1Gn-2 — Pn-20n-1) =(-1"" ay.

Remark: The functions p,, and q,, satisfies the following.

(—l)n_l

Pndn-1~Pn-19n = (_1)71—1 or Pn_Pnot = q
n-14qn

dn dqn-1
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Also they - satisfy pndn-2- Pn—2n = (=" 'a, or 2&- 2222
dn dn-2
_ ()" tay

dn—2dn

1.3.Definition:  Now we assign numerical values to the

quotients a,, so to the fraction a, + " ! T and to its
“ az+ a3+1~ .........

convergents.

Now suppose that a; > 0,........ ,ay > 0, a, may be negative

, in this case the continued fraction is said to be simple. Write
Xp = Z—", X = x SO that the value of the continued fraction is x,
n

or X. Then
[ag, aq, - .- ,ay] = [ag, aq, - - e P [ e M ,an]]

[, @ntt,ee anlpn-—1+ Pn—
— 9nAn+1 NI1Pn—1 pnzforZSnSN.
[an.an+1,mes anlqn-1+ qn-2

Pn_Pn-z _ (CD"an
dn Aqn-2 - dn-24qn
and a; > 0,........ ,ay > 0, x, — x,_, has the sign of (—1)™.
Which proves that the even convergents x,, increase strictly
with n, while the odd convergents x,,,, decrease strictly.

Note: As every g, is positive then from

Pn-1 _ (-pn-?

dn-149n

Also from 2z -
an dn-1
(_1)1’1—1

s0 that x,m41 > X, cONtrary if we assume that x,m 41 < x5,
for some m, w.If m < then from above x,,,; < X5, and if
m<u

, X, — X,—q has the sign of

then x,,.1 < x,Which is a contradiction. Hence we say that
every odd convergent is greater than any even convergent.

1.4.Definition: If all a,, are integers then the continued fraction
is called Simple Fraction. If p, and q,, are integers and q,, is
positive then

[ag, @y, oor voer ay] = :ﬂ = X, we say that the number x (which is
N

necessarily rational) is represented by the continued fraction.
Theorem 1.5: g,, = n, with inequality when n > 3.
Proof: In the first place, g =1,q; =a, = 1. If n > 2 then

Gn = Anqn-1* Gn-2 = qn_1+1so that g, > q,_, and g, = n.
If n> 3, then

dn = Gn-1 * qn-2 > Gn—1t1 =n,and so g, > n.

1.6.Definition: Any  simple continued
[ag, aq, .. ... , ay] represents a rational number x = xy

fraction

Theorem 1.7: If x is representable by a simple continued
fraction with an odd (even) number of convergents, it is also
representable by one with an even (odd) number.
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Proof: If a,, =2 then [ay, ay, ... ... , 4yl
= [ag, Ay, cor o ,a, — 1,1] while, if a, =1,
[ag, aq, . .. ,An_1, 11 = [ag, aq, - .- ,Qpn, Gy + 1]

For example [2,2,3] = [2,2,2,1] this choice of alternative
representations is often useful. We call a, =
[@n, Qrgrs von oo ,ay] (0 <n < N) the nth complete quotient of
the continued fraction [ay, a4, ... ... ,ay]. Thus x = ap, x =
!
a, a?+ 1 and
ay

— anpPn-1+ Pn—z

anqn-1+dn-z '
(2<n £N)

Theorem 1.8: a, = [a;], the integral part of a,, except that

aN_]_ = [aN_]_] - 1 When aN = 1

Proof: If N = 0, then a, = ap= [ag]. If N > 0 then a;,= a,+
1 0<n <N-1.

An+1

Now a;., >1 (0 <n < N-1) except that a;,,, =1 whenn =
N-landay =1.

Hence a, <a, <a,+1(0<n <N-1)and a, = [a,] for (0
< n < N-1) except in the case specified. And in any case ay
= ay = [ay].

Theorem 1.9: If two simple continued fractions

[ag, aq, - - ,ay] and [bg, by, ... ... , by] have the same value x,
and by, > 1, then M = N and the fractions are identical.

Proof: When we say that the two continued fractions are
identical we mean that they are formed by the same sequence
of partial quotients.

By the above theorem a, = [X] = b,. Let us suppose that the

first n partial quotients in the continued fractions are identical

and that a; and b;, are the nth complete quotients. Then x =

[ag, ay, .. ... A1, ] = [ag, @y, «on .. ,Qn_1,br].

Ifn=1then ap +— = a, +—,
ap by

theorem a; = b;.

a; = by, and therefore by above

! !
anPn—-1+ Pn— bpnbPn—1+ Pn—
If n> 1, then by —r——1=2 = R 12
Andn-1+dn-2  bpdn-1+dn-2

(arrl_ br’l)( Pn-19n-2 — Pn-29n-1 ) = 0. But Pn-19n-2 —
Pn-2qn-1 = (_ 1)n then

8 Ppqn-1 — Pn-1dn = (=1)" "t and so a;, = by,
it follows from the above theorem that a,, = b,,.

Suppose now for example, that N < M. Then our argument
shows that a, = b, for N<M. If M > N then &Y =

an
[ag, aq, - - ,ay] = [ag, aq, - - ANy D N1y eon e byl
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— by 41PN+ PN-1
b1lv+1QN+ aN-1 i i i
false. Hence M = N and the fractions are identical.

2. CONTINUED FRACTION ALGORITHM AND
EUCLID’S ALGORITHM

, Hence by (b) pyqn—1 — Pn—1qn = 0 which is

Let x be any real number, and let a, = [X]. Then X = ag+ &,, 0
<& <1

If ¢, # 0, wecan Write%: ai, lap] = a4, a1
=a;+§,0<¢& <1
If& # O,wecanwriteé:ag =a, + &,

0<¢&,<1,andsoon
1

Also a;,= : >1,andso a, =1, forn> 1.

n—1
1
Thusx=[ao, a1] =[ao, a; + a_/] =[ao, ay, az] =[ao, a1, az, az]
2
= ... where ag, aq, ay,...... are integers and
a;>0,a,>0,........

The system of equations x = ag+ &, (0 < &, < 1),

—zaj=aq+§, 0§ <1),

o

1 ro—
g:az =a,+&, (0<¢,<1),

.............. is known as the continued
fraction algorithm. The algorithm continues so long as &, # 0.
If we eventually reach a value of n, say N, for which &y =0,
the algorithm terminates and X = [a,, a4, ... .- ,ay].

In this case X is represented by a simple continued fraction, and
is rational. The number a;, are the complete quotients of the
continued fraction.

Theorem 2.1: Any rational number can be represented by a
finite simple continued fraction.
Proof: If x is an integer, then &, = 0 and X = a,. If X is not
integral, then x = % where h and k are integers and k > 1. Since
%: ap+ &y, h=agk + &K, a, is the quotient, and k, = &,k the
remainder, when h is divided by k.

A— l = L
Ifé, #0thena; = A

k=a,k,; + & kq; thus a, is the quotient, and

and = = a; + &,
kq

k, = &k, the remainder, when k is divided by k,.Thus we
obtain a series of equations h = agk + k; ,

k = a1k1 + kz, kl = azkz + k3’ ................
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Continuing so long as &, # 0, or what is the same thing, so long
askp.1 # 0.

The non-negative integers Kk, kq, ko, ... ... .... form a strictly
decreasing sequence, and so k,,,; = 0 for

some N. It follows that &y = 0 for some N, and the continued
fraction algorithm terminates. This proves the theorem.
Remark: The system of equations

h=aok+k,, (0<k, <k),

k=ak; +k,, 0<k,< ky),
kyz=ay_1ky1+ky, (0<ky < ky_4),
ky_1 = ayky is known as Euclid’s algorithm.

3.DIFFERENCE BETWEEN THE FRACTION AND
ITS CONVERGENTS:

Suppose N > 1 and n > 0 then by x = ZpPr=ttPr-z (1<

anqn-1+qn-z ' -
n < N-1) and so

Pndn-1— Pn—-1 ="
x-Pno FrinoaPacian - , Also x - 22 =x
an an (Apy19nt dn-1)  dn (Apgq dnt dn-1) do
1
-ay =—.
0 a;

If we write q; = aj, ¢, = apqn-1+ qn_2 (L <n <N-1)
(So in particular gy = qy), we have the following theorem.
Theorem 3.1: If 1 < n < N-1, then

—-1)n
x-Pn= U7
Adn dn An+1
Proof: a,.1 < a4 <appq tlforn< N —2,

by the equation a, < a,, < a, +1 (0 < n < N-1), except that

! -—
ay-1 = ay-1 t1

when ay =1. Hence if we ignore this exceptional case for the
moment, we have

q1=a;<a; +1< g and Gnyy = AnyiqGn + Guot
> ni19n T Gn-1 = qn+1

Gn+1 < Gn1Gn + Gn-1t dn = Gneatdn

< Api2Gn+1 T In = Gnias

forl <n < N-2.1t follows thatﬁ < |pn — g X

1
<

. 1
p (n < N-2) while |py_1 — qn-1X| = —, Py —qnXx =0
. dn+1 . aN

in the exceptional case

q1’1+1 <Ant+1qn T Gn-1t Gn = Qns1tqn
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< Api2qne1 + Gn = Gne2 Must be replaced by

qn-1= (lay—1 + 1) qn_2* Gn—3 = qn-1% qn-2 = qy and the

first inequality. In the case = < |Pn — qnX| < = (n <N-
. . dn+2 dn+1

2) by an equality. In this case shows that |p,, — g, X| decreases

steadily as n increases, Since g,, increases steadily, |x - 22

n
. Adn
decreases steadily.

We may sum up the most important conclusion in the following

theorem
i.e. If N >1, n >0 then the differences x - Z—”, qnX - Dp = (—q1)n5n,
n n+1
where 0<§,<1(1<n <N-2),
Syop =1, X -B2| < —— <= for n < N-1 with inequality
dn dndn+1 an
in both places except whenn =N — 1.
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